A Cytotoxic Acetophenone with a Novel Skeleton, Isolated from Cynanchum taiwanianum

by Pao-Lin Huang
Ta-Jen Pharmaceutical Junior College, Ping Tung Hsien, Taiwan 907, Republic of China
and Shen-Jeu Won
Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan 701, Republic of China
and Shiow-Hwa Day and Chun-Nan Lin*
School of Pharmacy, Kaohsiung Medical College, Kaohsiung, Taiwan 807, Republic of China

Abstract

A novel acetophenone, cynantetrone (1), was isolated from the rhizome of Cynanchum taiwanianum and its structure determined by spectroscopic methods. Compound $\mathbf{1}$ and cynandione B (3) showed significant in vitro cytotoxicity against T-24 cell lines, and $\mathbf{3}$ also against PLC/PRF/5 cell lines.

1. Introduction. - In previous papers [1-4] we have reported the isolation and biological activity of acetophenones, i.e., of cynandiones A-D, cynanchone A, and 2,5dihydroxyacetophenone, from Cynanchum taiwanianum (Asclepiadaceae). In continuation of the investigation on bioactive constituents from this plant, a novel acetophenone, cynantetrone (1), was isolated from the rhizome of C. taiwanianum, and its structure was elucidated. The cytotoxic activity of $\mathbf{1}$, cynandiones A (2) and B (3), and cynanchone $A(4)$ against some cell types are reported.
2. Results and Discussion. - Compound 1, an orange powder, possesses the molecular formula $\mathrm{C}_{66} \mathrm{H}_{44} \mathrm{O}_{20}$ as determined by DCI mass spectra (negative mode; $[M-\mathrm{H}]^{-}$at $m / z 1155$) and by H - and C -atom counting in NMR spectra. IR Absorptions were indicative of OH (3260 and $3430 \mathrm{~cm}^{-1}$), carboxylic-acid (1720 and $3560 \mathrm{~cm}^{-1}$), conjugated $\mathrm{C}=\mathrm{O}\left(1660 \mathrm{~cm}^{-1}\right)$, and aromatic-ring moieties $\left(1580 \mathrm{~cm}^{-1}\right)$. The ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}$-NMR data (Table 1), including NOESY, COSY, HMQC, and HMBC, suggested that $\mathbf{1}$ is a planar tetraacetophenone derivative with eight aromatic rings and two ether linkages (Fig. 1).

The ${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{1}$ showed eight pairs of ortho-coupled aromatic protons at $\delta 6.45$ and $6.85(J=$ $8.5 \mathrm{~Hz}), 6.76$ and $7.79(J=8.5 \mathrm{~Hz}), 6.73$ and $6.96(J=8.5 \mathrm{~Hz}), 6.73$ and $7.79(J=8.5 \mathrm{~Hz}), 6.70$ and $6.93(J=$ $8.5 \mathrm{~Hz}), 6.49$ and $7.78(J=8.5 \mathrm{~Hz}), 6.99$ and $6.71(J=8.5 \mathrm{~Hz})$, and 6.19 and $7.70(J=8.5 \mathrm{~Hz})$, four acetyl signals at 2.60 and 2.69 (each $6 \mathrm{H}, s$), two Me s at 1.66 and 1.78 , two $\mathrm{CH}_{2} d$ at $\delta 2.74$ and $3.97\left(J_{\mathrm{gem}}=15.2 \mathrm{~Hz}\right)$, and 2.87 and 4.13 ($J_{\mathrm{gem}}=15.2 \mathrm{~Hz}$), four phenolic-proton signals at $\delta 8.60,8.83,15.5$, and 15.6 , and two carboxylic-acid signals at $\delta 13.6$ and 13.7.

In the ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{1}$, the chemical shift values of $\mathrm{C}(1 \mathrm{a})$ to $\mathrm{C}\left(8 \mathrm{a}^{\prime \prime \prime}\right)$ and $\mathrm{C}(1 \mathrm{~b})$ to $\mathrm{C}\left(8 \mathrm{~b}^{\prime \prime \prime}\right)$ were similar to those of cynandiones $\mathrm{B}\left(\mathbf{3} ; 7 R, 7^{\prime \prime} S\right)$ and $\mathrm{D}\left(7 R, 7^{\prime \prime} R\right)$, except for $\mathrm{C}(1$ a) to $\mathrm{C}(6 \mathrm{a})$ and $\mathrm{C}(1 \mathrm{~b})$ to $\mathrm{C}(6 \mathrm{~b})$ $\left.[3]^{1}\right)$. Comparison of chemical shift values of $\mathrm{C}(1 \mathrm{a})$ to $\mathrm{C}(6 \mathrm{a})$ and $\mathrm{C}(1 \mathrm{~b})$ to $\mathrm{C}(6 \mathrm{~b})$ with data reported in [5] and of the phenolic protons with corresponding data of cynandione D [2][3], as well as the presence of ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{NOESY}$

1

3

2

4

Fig. 1. Structures of $\mathbf{1}-\mathbf{4}$ and ${ }^{1} H,{ }^{13} \mathrm{C}$ long-range correlations observed in the HMBC spectrum of $\mathbf{1}$
correlations between $\mathrm{OH}-\mathrm{C}(6 \mathrm{a})$ and $\mathrm{OH}-\mathrm{C}\left(2 \mathrm{a}^{\prime}\right)$, and $\mathrm{OH}-\mathrm{C}(6 \mathrm{~b})$ and $\mathrm{OH}-\mathrm{C}\left(2 \mathrm{~b}^{\prime}\right)$, suggested that the two COOH signals at $\Delta 13.6$ and 13.7 and the four OH signals at $\delta 8.60,8.83,15.5$, and 15.6 were assigned to COOH groups at $\mathrm{C}(3 \mathrm{~b})$ and $\mathrm{C}(3 \mathrm{a})$ and OH groups at $\mathrm{C}(6 \mathrm{~b}), \mathrm{C}(6 \mathrm{a}), \mathrm{C}\left(2 \mathrm{~b}^{\prime}\right)$, and $\mathrm{C}\left(2 \mathrm{a}^{\prime}\right)$, respectively. These data were consistent with the planar structure of cynantetrone and with two ether linkages between $\mathrm{C}\left(6 \mathrm{a}^{\prime \prime}\right)$ and $\mathrm{C}\left(6 \mathrm{~b}^{\prime \prime}\right)$ and $\mathrm{C}\left(2 \mathrm{a}^{\prime \prime \prime}\right)$ and $\mathrm{C}\left(2 \mathrm{~b}^{\prime \prime \prime}\right)$, or, alternatively, with two ether linkages between $\mathrm{C}\left(6 \mathrm{a}^{\prime \prime}\right)$ and $\mathrm{C}\left(2 \mathrm{~b}^{\prime \prime \prime}\right)$ and $\mathrm{C}\left(6 \mathrm{~b}^{\prime \prime}\right)$ and $\mathrm{C}\left(2 \mathrm{a}^{\prime \prime \prime}\right)$, both kind of linkages being also compatible with the 2D-NMR (Fig. 1) and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra (Table 1).

The base peak at $m / z 568$ in the MS of $\mathbf{1}$ was attributed to the fragments [1155-a-$b]^{-}$or $[851-283]^{-}$(Fig. 2). These and characteristic peaks at $m / z 1137$ ([1155-
Table 1. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra $\left(\mathrm{CDCl}_{3}\right)$ of $\left.\mathbf{1}^{\mathrm{a}}\right)^{1}$

	$\delta(\mathrm{C})$	$\delta(\mathrm{H})$									
C (1a)	124.8		$\mathrm{C}\left(1 \mathrm{a}^{\prime \prime}\right)$	112.9		C(1b)	124.8		$\mathrm{C}\left(1 \mathrm{~b}^{\prime \prime}\right)$	115.7	
C (2a)	131.1		$\mathrm{C}\left(2 \mathrm{a}^{\prime \prime}\right)$	119.7		$\mathrm{C}(2 \mathrm{~b})$	131.2		$\mathrm{C}\left(2 \mathrm{~b}^{\prime \prime}\right)$	119.9	
C(3a)	108.8		$\mathrm{C}\left(3 \mathrm{a}^{\prime \prime}\right)$	158.8		C(3b)	109.2		$\mathrm{C}\left(3 \mathrm{~b}^{\prime \prime}\right)$	$158.8{ }^{\text {b }}$)	
H-C(4a)	119.9	$6.85(d, J=8.5)$	H-C(4a")	118.5	$6.73(d, J=8.5)$	$\mathrm{H}-\mathrm{C}(4 \mathrm{~b})$	120.8	6.93 ($d, J=8.5$)	H-C(4b")	$111.7^{\text {b }}$)	$6.71(d, J=8.5)$
$\mathrm{H}-\mathrm{C}(5 \mathrm{a})$	120.0	6.45 ($d, J=8.5$)	$\mathrm{H}-\mathrm{C}\left(5 \mathrm{a}^{\prime \prime}\right)$	120.8	6.96 ($d, J=8.5$)	$\mathrm{H}-\mathrm{C}(5 \mathrm{~b})$	118.5	6.70 ($d, J=8.5$)	$\mathrm{H}-\mathrm{C}\left(5 \mathrm{~b}^{\prime}\right)$	120.8	$6.99(d, J=8.5)$
$\mathrm{OH}-\mathrm{C}(6 \mathrm{a})$	150.0	8.83 (s)	C(6a")	141.2		$\mathrm{OH}-\mathrm{C}(6 \mathrm{~b})$	149.4	8.60 (s)	$\mathrm{C}\left(6 \mathrm{~b}^{\prime \prime}\right)$	139.0	
$\mathrm{C}(7 \mathrm{a})$	97.5		$\mathrm{C}\left(7 \mathrm{a}^{\prime \prime}\right)$	74.0		C (7b)	98.1		$\mathrm{C}\left(7 \mathrm{~b}^{\prime \prime}\right)$	74.1	
$2 \mathrm{H}-\mathrm{C}(8 \mathrm{a})$	44.5	$\begin{aligned} & 2.87(d, J=15.2) \\ & 4.13(d, J=15.2) \end{aligned}$	$\mathrm{Me}\left(8 \mathrm{a}^{\prime \prime}\right)$	24.5	1.66 (s)	$2 \mathrm{H}-\mathrm{C}(8 \mathrm{~b})$	39.2	$\begin{aligned} & 2.74(d, J=15.2) \\ & 3.97(d, J=15.2) \end{aligned}$	$\mathrm{Me}\left(8 \mathrm{~b}^{\prime \prime}\right)$	26.3	1.78 (s)
$\mathrm{C}(9 \mathrm{a}) \mathrm{OOH}$	182.9	13.6 (s)				$\mathrm{C}(9 \mathrm{~b}) \mathrm{OOH}$	183.7	13.7 (s)			
$\mathrm{C}\left(1 \mathrm{a}^{\prime}\right)$	112.7		$\mathrm{C}\left(1 \mathrm{a}^{\prime \prime}\right)$	112.7		C(1b')	112.9		$\mathrm{C}\left(1 \mathrm{~b}^{\prime \prime}\right)$	115.6	
$\mathrm{OH}-\mathrm{C}\left(2 \mathrm{a}^{\prime}\right)$	158.2	15.6 (s)	$\mathrm{C}\left(2 \mathrm{a}^{\prime \prime}\right)$	$158.6^{\text {b }}$)		$\mathrm{OH}-\mathrm{C}\left(2 \mathrm{~b}^{\prime}\right)$	158.4	15.5 (s)	C(2b"')	$158.6{ }^{\text {b }}$)	
$\mathrm{C}\left(3 \mathrm{a}^{\prime}\right)$	114.7		$\mathrm{C}\left(3 \mathrm{a}^{\prime \prime}\right)$	114.8		$\mathrm{C}\left(3 \mathrm{~b}^{\prime}\right)$	115.7		$\mathrm{C}\left(3 \mathrm{~b}^{\prime \prime \prime}\right)$	115.7	
$\mathrm{H}-\mathrm{C}\left(4 \mathrm{a}^{\prime}\right)$	$135.4^{\text {b }}$)	$7.79(d, J=8.5)$	$\mathrm{H}-\mathrm{C}\left(4 \mathrm{a}^{\prime \prime \prime}\right)$	132.0	7.79 ($d, J=8.5$)	$\mathrm{H}-\mathrm{C}\left(4 \mathrm{~b}^{\prime}\right)$	135.4	$7.78(d, J=8.5)$	H-C($4 \mathrm{~b}^{\prime \prime}$)	132.1	7.70 ($d, J=8.5)$
H-C(5a')	111.6	6.76 ($d, J=8.5$)	$\mathrm{H}-\mathrm{C}\left(5 \mathrm{a}^{\prime \prime \prime}\right)$	$118.5^{\text {b }}$)	6.73 ($d, J=8.5)$	$\mathrm{H}-\mathrm{C}\left(5 b^{\prime}\right)$	108.8	6.49 ($d, J=8.5$)	$\mathrm{H}-\mathrm{C}\left(5 \mathrm{~b}^{\prime \prime}\right)$	109.2	$6.19(d, J=8.5)$
C(6a')	$162.2^{\text {b }}$)		C(6a'")	158.9		$\mathrm{C}\left(6 \mathrm{~b}^{\prime}\right)$	162.2		$\mathrm{C}\left(6 \mathrm{~b}^{\prime \prime \prime}\right)$	$162.0^{\text {b }}$)	
$\mathrm{C}\left(7 \mathrm{a}^{\prime}\right)$	204.5		C(7a'")	203.3		$\mathrm{C}\left(7 \mathrm{~b}^{\prime}\right)$	204.5		C(7b"')	203.3	
$\mathrm{Me}\left(8 \mathrm{a}^{\prime}\right)$	26.2	2.69 (s)	$\mathrm{Me}\left(8 \mathrm{a}^{\prime \prime \prime}\right)$	26.5	2.69 (s)	$\mathrm{Me}\left(8 \mathrm{~b}^{\prime}\right)$	26.5	2.60 (s)	$\mathrm{Me}\left(8 \mathrm{~b}^{\prime \prime \prime}\right)$	26.5	2.60 (s)

$\left.\left.\left.\mathrm{H}_{2} \mathrm{O}\right]^{-}\right), \quad 851\left(\left[1155-\mathrm{a}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}\right]^{-}\right), \quad 552 \quad\left[568-\mathrm{H}_{2} \mathrm{O}+2 \mathrm{H}\right]^{-}\right), \quad 284 \quad([\mathrm{~b}-$ $\left.\mathrm{COOH}]^{-}\right), 283\left(\left[\mathrm{~b}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}\right]^{-}\right)$, and $260\left([\mathrm{a}+2 \mathrm{H}]^{-}\right)[6]$, as well as the presence of a NOESY correlation between $\mathrm{OH}-\mathrm{C}\left(2 \mathrm{a}^{\prime}\right)$ and $\mathrm{OH}-\mathrm{C}\left(2 \mathrm{~b}^{\prime}\right)$, established finally that the novel cynantetrone corresponds to structure 1.

1
Fig. 2. DCI-MS Fragmentation patterns of $\mathbf{1}$
The NOESY spectrum also indicated correlations between $\operatorname{Me}\left(8 \mathrm{a}^{\prime \prime}\right)$ and one geminal proton at $\mathrm{C}(8 \mathrm{a})(\delta 4.13)$, and between $\mathrm{Me}\left(8 \mathrm{~b}^{\prime \prime}\right)$ and one geminal proton at $\mathrm{C}(8 \mathrm{~b})$ ($\delta 2.74$), suggesting β - and α-configurations for $\mathrm{Me}\left(8 \mathrm{a}^{\prime \prime}\right)$ and $\mathrm{Me}\left(8 \mathrm{~b}^{\prime \prime}\right)$, respectively.

The cytotoxic activity of $\mathbf{1}-\mathbf{4}$ against PLC/PRF/5, KB, and T- 24 cells was studied in vitro [7][8]. Compounds $\mathbf{1}$ and $\mathbf{3}$ exhibited significant cytotoxic effect against T-24 cell lines with $E D_{50}$ values of $c a .3 .5$ and $2.5 \mu \mathrm{~g} / \mathrm{ml}$, respectively, and $\mathbf{3}$ also against PLC/ PRF/5 cell lines ($\left.E D_{50}=2.7 \mu \mathrm{~g} / \mathrm{ml}\right)$ (Table 2). Thus, the presence of two moieties of a biacetophenone such as 2 or $\mathbf{4}$ in a dimer such as $\mathbf{3}$ enhanced the in vivo cytotoxic activity against PLC/PRF/5, KB, and T-24 cells, but the presence of four such moieties in a tetramer such as $\mathbf{1}$ did not enhance the cytotoxic activity. This clearly indicates that

Table 2. Cytotoxicity of 1-4 against Different Cell Lines ${ }^{\text {a }}$)

	$E D_{50}[\mu \mathrm{~g} / \mathrm{ml}]$		
	PLC/PRF/5	KB	T-24
$\mathbf{1}$	6.6	NS	3.5
$\mathbf{2}$	10.3	9.0	11.0
$\mathbf{3}$	2.7	5.5	2.5
$\mathbf{4}$	17.7	NS	NS
Cisplatin	5.29	0.16	$\left.-{ }^{c}\right)$
Mitomycin C	$\left.-^{c}\right)$	$\left.-^{c}\right)$	0.042

${ }^{\text {a }}$) For significant activity of the pure compounds, an $E D_{50}<4.0 \mu \mathrm{~g} / \mathrm{ml}$ is required. ${ }^{\text {b }}$) NS, no significant activity of the pure compounds. ${ }^{\text {c }}$) Not determined.
these acetophenone derivatives need a reasonable molecular size, such as given in $\mathbf{3}$, for cytotoxic activity against tumor cells.

This work was supported by a grant from the National Science Council of R. O. C. (NSC 88-2314-B037-112).

Experimental Part

General. M.p. uncorrected. UV Spectra: Jasco-UV-VIS spectrophotometer; $\lambda_{\max }(\log \varepsilon)$ in nm. IR Spectra: Hitachi $260-30$ spectrometer; \tilde{v} in $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz})$ Spectra: Varian-Unity- 400 spectrometer; δ in ppm rel. to $\mathrm{SiMe}_{4}(=0 \mathrm{ppm}), J$ in Hz. MS: $J M S-H X-100$ mass spectrometer; m / z (rel. \%).

Plant Material. Fresh rhizomes (5 kg) of C. taiwanianum were collected at Kaohsiung Hsieng, Taiwan, in July 1993. A voucher specimen is deposited in the laboratory of medicinal chemistry.

Extraction and Isolation. The fresh rhizomes $(5 \mathrm{~kg})$ of C. taiwanianum were chipped and extracted with acetone at r.t. several times. The extract was subjected to column chromatography (silica gel, cyclohexane/ $\mathrm{CHCl}_{3} / \mathrm{MeOH} 1: 9: 1$): 15 mg of cynantetrone ($=2,2^{\prime \prime}, 7^{\prime}, 9^{\prime}$-tetraacetyl-3', 3^{\prime} a, 12^{\prime} a, 13^{\prime}-tetrahydro- $1,1^{\prime \prime}, 10,10^{\prime \prime}$-tetra-hydroxy-3'a,12'a-dimethyldispiro[6H-dibenzo[b,d]pyran-6, $2^{\prime}-[2 \mathrm{H}, 14 \mathrm{H}][1,4,8,12,15,18]$ hexaoxadibenzo[$\left.\mathrm{jk}: \mathrm{j}^{\prime} \mathrm{k}^{\prime}\right]-$ cyclodeca[1,2,3,4-def:6,7,8,9-d'e'f']anthracene-14', $6^{\prime \prime}$-[6H]dibenzo[b,d]pyran]-7,7"-dicarboxylic acid; 1). Orange powder $\left(\mathrm{CHCl}_{3}\right)$. M.p. $>300^{\circ} \cdot[\alpha]_{\mathrm{D}}^{25}=-39\left(c=0.18, \mathrm{CHCl}_{3}\right)$. UV (MeOH): $276(4.68)$. IR (KBr): 3560, 3430, 3260, 1720, 1660, 1580. ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$: Table 1. DCI-MS (neg.; see Fig. 2): 1155 (0.2, [M-1] ${ }^{-}$), 1137 (9, $\left.\left[1155-\mathrm{H}_{2} \mathrm{O}\right]^{-}\right), 851\left(3,\left[1155-\mathrm{a}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}\right]^{-}\right), 568\left(100,[851-283]^{-}\right.$or $\left.[1155-\mathrm{a}-\mathrm{b}]^{-}\right), 552(25,[568-$ $\left.\left.\mathrm{H}_{2} \mathrm{O}+2 \mathrm{H}\right]^{-}\right), 284\left(15,[\mathrm{~b}-\mathrm{COOH}]^{-}\right), 283\left(7,\left[\mathrm{~b}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}\right]^{-}\right), 260\left(3,[\mathrm{a}+2 \mathrm{H}]^{-}\right)$.

Tumor Cell Growth Inhibition Assays. A microassay for cytotoxicity was performed using a MTT (=3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-1 H-tetrazolium bromide) assay [7][8]. Briefly, $1-3 \cdot 10^{3}$ cells $/ 100 \mu \mathrm{l}$ were seeded in 96-well microplates (Nunck, Roskilde, Denmark) and preincubated for 6 h to allow cell attachment. This medium was then aspirated, and fresh medium ($100 \mu \mathrm{l}$) containing various concentrations of the test drug was added to the cultures. The cells were incubated with each drug for 6 days. Cell survival was evaluated by adding $10 \mu \mathrm{l}$ of tetrazolium salt soln. (1 mg of MTT/ml in PBS (phosphate buffered saline soln.)). After 4 h incubation at 37°, DMSO $(100 \mu \mathrm{l})$ was added to dissolve the precipitate of reduced MTT. Microplates were then shaken for 15 min , and the absorbance was determined at 550 nm with a multiwell scanning spectrophotometer (Dynex MR 5000, Chantilly, VA).

PLC/PRF/5 Cells were established from a human hepatoma and known to produce HBs Ag continuously in culture fluids [9]. Human hepatoma PLC/PRF/5 cells, epidermoid carcinoma KB cells, and human bladder carcinoma T-24 cells were maintained in Dulbecco's modified Eagle medium (DMEM, Gibco BRL, Grand Island, NY, USA) [7][8], containing 10% fetal bovine serum (FBS, Gibco BRL), 2 mm l-glutamine, penicillin ($100 \mathrm{units} / \mathrm{ml}$) and streptomycin $(100 \mu \mathrm{~g} / \mathrm{ml})$. For the microassay, the growth medium was supplemented with 10 mm HEPES ($=1$-(2-hydroxyethyl)piperazine-4-ethanesulfonic acid) buffer (pH 7.3) and incubated at 37° in a CO_{2} incubator.

REFERENCES

[1] P. L. Huang, C. M. Lu, M. H. Yen, R. R. Wu, C. N. Lin, Phytochemistry 1995, $40,537$.
[2] P. L. Huang, C. M. Lu, M. H, Yen, R. R. Wu, C. N. Lin, Phytochemistry 1996, 41, 293.
[3] C. N. Lin, P. L. Huang, C. M. Lu, M. H, Yen, R. R. Wu, Phytochemistry 1997, 44, 1359.
[4] C. N. Lin, P. L. Huang, J. J. Wang, S. H. Day, H. C. Lin, J. P. Wang, Y. L. Ko, C. M. Teng, Biochem. Biophys. Acta 1998, 1380, 115.
[5] K. Biemann, 'Spectral Data for Structure Determination of Organic Compounds', Springer-Verlag, Berlin-Heidelberg-New York, 1989, p. C 120.
[6] F. W. McLafferty, 'Interpretation of Mass Spectra', W. A. Benjamin, Inc., Reading, Massachusetts, 1973, p. 142.
[7] J. Carmichael, J. B. Mitchell, W. G. DeGraff, J. Gamson, A. F. Gazdar, B. E. Johnson, E. Glatstein, J. D. Minna, Br. J. Cancer 1988, 57, 540.
[8] C. M. Tsai, A. F. Gazdar, D. J. Venzon, S. M. Steinberg, R. L. Dedrick, J. L. Mulshine, B. S. Kramer, Cancer Res. 1989, 49, 2390.
[9] Y. Nakajima, J. Kuwata, Y. Nomita, K. Okuda, Microbiol. Immunol. 1982, 26, 705.
Received June 7, 1999

